NumPy Sum in Python
What is numpy sum()?
numpy.sum()
is a built-in function in the NumPy library used to calculate the sum of array elements. It allows summing all elements or performing summation along specific axes in multi-dimensional arrays.
The function efficiently computes sums with optional parameters like axis selection, data type conversion, and initial value addition. This makes it highly flexible for various use cases.
Summation is a fundamental operation in numerical computations, data analysis, and machine learning. It helps in aggregating data, performing mathematical operations, and simplifying complex calculations.
Syntax of Python numpy.sum() Function
python
1
numpy.sum(arr, axis=None, dtype=None, out=None, initial=0)
Explanation of Syntax Components:
arr
: The input NumPy array.axis
(optional): Specifies the axis along which to sum. Default isNone
(sums all elements).dtype
(optional): Defines the data type of the output sum.out
(optional): Stores the result in a provided array.initial
(optional): An initial value added to the sum.
Parameters of numpy.sum()
arr
(Required): Input array containing numerical values.axis
(Optional): IfNone
, sums all elements. If an integer, sums along that axis.dtype
(Optional): Data type of the result (e.g.,int
,float
).out
(Optional): Specifies an output array to store the sum result.initial
(Optional): A starting value added before summing array elements.
Python numpy.sum() Examples
1. All Elements sum in an Array
Problem Statement:
Given a NumPy array, find the total sum of all its elements.
How to Solve:
- Import
NumPy
. - Create an array.
- Use
numpy.sum()
without specifying an axis. - Print the result.
Code:
python
1 2 3 4
import numpy as np arr = np.array([1, 2, 3, 4, 5]) result = np.sum(arr) print(result)
Explanation:
- The array
[1, 2, 3, 4, 5]
is passed tonp.sum()
. - Since no
axis
is specified, it sums all elements:1+2+3+4+5 = 15
. - The output is
15
.
2. Array Elements Sum Along an Axis
Problem Statement:
Given a 2D NumPy array, compute row-wise and column-wise sums.
How to Solve:
- Import
NumPy
. - Define a 2D array.
- Use
np.sum()
withaxis=0
for column-wise sum. - Use
np.sum()
withaxis=1
for row-wise sum. - Print the results.
Code:
python
1 2 3 4 5 6
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) col_sum = np.sum(arr, axis=0) row_sum = np.sum(arr, axis=1) print("Column-wise Sum:", col_sum) print("Row-wise Sum:", row_sum)
Explanation:
- The 2D array:
1 2
[[1 2 3] [4 5 6]]
axis=0
sums down each column:[1+4, 2+5, 3+6] = [5, 7, 9]
.axis=1
sums across each row:[1+2+3, 4+5+6] = [6, 15]
.- Outputs:
Column-wise Sum: [5 7 9]
,Row-wise Sum: [6 15]
.
3. Output Data Type Specifying with Sum
Problem Statement:
Given an integer array, compute the sum but return the result as a floating-point number.
How to Solve:
- Import
NumPy
. - Define an integer array.
- Use
np.sum()
withdtype=float
. - Print the result.
Code:
python
1 2 3 4
import numpy as np arr = np.array([1, 2, 3, 4]) result = np.sum(arr, dtype=float) print(result)
Explanation:
- The integer array
[1, 2, 3, 4]
normally returns an integer sum. - Using
dtype=float
ensures the result is10.0
instead of10
. - Output:
10.0
.
4. Initializing Value for the Sum
Problem Statement:
Given a NumPy array, compute its sum but start with an initial value.
How to Solve:
- Import
NumPy
. - Define an array.
- Use
np.sum()
withinitial=10
. - Print the result.
Code:
python
1 2 3 4
import numpy as np arr = np.array([1, 2, 3]) result = np.sum(arr, initial=10) print(result)
Explanation:
- The array
[1, 2, 3]
sums to6
. - The
initial=10
adds10
before summing:10 + (1+2+3) = 16
. - Output:
16
.
Key Summary of numpy sum()
numpy.sum()
is a function for calculating the sum of elements in arrays.- It works with multi-dimensional arrays, allowing summation along specific axes.
- The
dtype
parameter ensures the output type matches the desired format. - The
initial
parameter allows starting the sum from a predefined value. - Summing along
axis=0
provides column-wise totals, whileaxis=1
gives row-wise totals. - Used in numerical analysis, machine learning, and statistical computations for efficient data aggregation.